Natural Sciences - Research article Open Access Logo

Fabricating and investigating the influence of the temperature on electrical and optical properties of the p-type SnO2:Ga (GTO) thin films prepared by DC magnetron sputtering

Phuc Huu Dang 1, *
Nhan Van Pham 1
Hieu Van Le 2
Tran Le 1
  1. VNUHCM-University of Science
Correspondence to: Phuc Huu Dang, VNUHCM-University of Science. Email: pvphuc@vnuhcm.edu.vn.
Volume & Issue: Vol. 19 No. 4 (2016) | Page No.: 137-146 | DOI: 10.32508/stdj.v19i4.620
Published: 2016-12-31

Online metrics


Statistics from the website

  • Abstract Views: 0
  • Galley Views: 0

Statistics from Dimensions

Copyright The Author(s) 2023. This article is published with open access by Vietnam National University, Ho Chi Minh city, Vietnam. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. 

Abstract

Transparent Ga-doped tin oxide (GTO) thin films were fabricated on quartz glasses from (SnO2 + Ga2O3) mixture ceramic target by direct current (DC) magnetron sputtering in Ar gas at the pressure of 4.10-3torr. X ray diffraction (XRD), Hall - effect and UV-vis spectra measurements were performed to characterize the deposited films. Films were deposited directly with different temperatures in order to investigate the influence of temperature on their electrical and optical propertises. After that GTO films were deposited at 400 oC and then were annealed in Ar gas at different temperature in order to eliminate acceptor and donor compensation. Deposited films showed p-type electrical property, polycrystalline tetragonal rutile structure and their average transmittance above 80 % in visible light range at the optimum annealing temperature of 550 oC. In addition, p-type conductivity was also confirm by the non-linear characteristics of a p-type GTO/n Si. The best electrical properties of film were obtained on 15 % wt Ga2O3-doped SnO2 target with its resistivity, hole concentration and Hall mobility were 0,63 .cm, 3,3.1018 cm-3 and 3,01 cm2V-1s-1, respectively.

Comments