Downloads
Abstract
The forecasting models by traditional regression function have the crisp functions such as Y=f(x1, x2 ,….,xn) or logY=f(logx1, logx2 ,….,logxn). Here f has the linear form and xi are the factors such as GDP, temperature, industrial output, population… But these models are able to be used only when the linear correlation existed (expressed by the correlation coefficient). This paper introduced the regression model based on the fuzzy Takagi-Sugeno rules. These rules are built by using the subtractive clustering. The model is used for the general case, even when there are no the crisp function f. Examining shows that the good results are obtained in the case of traditional correlation such as linear or linear by logarithm. The results are also satisfactory for the case of unknown correlation. The electricity consumption forecasting due to the temperature factor for one substation of HochiMinh city was carried out.
Issue: Vol 17 No 1 (2014)
Page No.: 30-36
Published: Mar 31, 2014
Section: Engineering and Technology - Research article
DOI: https://doi.org/10.32508/stdj.v17i1.1267
Download PDF = 1834 times
Total = 1834 times