Open Access

Downloads

Download data is not yet available.

Abstract

Gas injection has been widely used for Improved Oil Recovery (IOR)/ Enhanced Oil Recovery (EOR) processes in oil reservoirs. Unlike the conventional gas injection (CGI) modes of CGI and Water Alternating Gas (WAG), the Gas-Assisted Gravity Drainage (GAGD) process takes advantage of the natural segregation of reservoir fluids to provide gravity stable oil displacement. It has been proved that GAGD Process results in better sweep efficiency and higher microscopic displacement to recover the bypassed oil from un-swept regions in the reservoir. Therefore, dry gas has been considered for injection in fractured basement reservoir, Bao Den (BD) oil field located in Cuu Long basin through the GAGD process application. This field, with a 5-year production history, has nine production wells and is surrounded by a strong active edge aquifer from the North-West and the South East flanks. The depth of basement granite top is about 2,800 mTVDss with a vertical oil column of 1,500m. The pilot GAGD project has been designed to test an isolated domain in the BD fractured basement reservoir where there is favorable reservoir conditions to implement GAGD. Both reservoir simulation and Lab test have been run and confirmed the feasibility and the benefit of GAGD project in the selected area.The Dry gas will be periodically injected through existing wellwith high water cut production that located in the isolated area. As the injected gas rises to the top to form a gas zone pushing GOC (gas oil contact) downward, and may push WOC (water oil contact) to lower part of this producer (or even away from bottom of the well bore) could lower down water cut when switch this well back to production mode. The matched reservoir model with reservoir and fluid properties have been used to implement sensitivity analysis, the result indicated that there is significantly oil incremental and water cut reduction by GAGDapplication. Many different scenarios have run to find the optimal reservoir performance through GAGD process. Among these runs, the optimal scenario, which has distinct target, requires high levels of gas injection rate to attain the maximum cumulative oil production.



Author's Affiliation
Article Details

Issue: Vol 19 No 1 (2016)
Page No.: 161-168
Published: Mar 31, 2016
Section: Engineering and Technology - Research article
DOI: https://doi.org/10.32508/stdj.v19i1.514

 Copyright Info

Creative Commons License

Copyright: The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 How to Cite
Nguyen, T., & Tran, X. (2016). Gas-assisted gravity drainage process for improved oil recovery in Bao Den fractured basement reservoir. Science and Technology Development Journal, 19(1), 161-168. https://doi.org/https://doi.org/10.32508/stdj.v19i1.514

 Cited by



Article level Metrics by Paperbuzz/Impactstory
Article level Metrics by Altmetrics

 Article Statistics
HTML = 1095 times
Download PDF   = 577 times
Total   = 577 times